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Abstract: An equation of state for hot, dense matter is presented in a form that is sufficiently rapid to
use directly in hydrodynamical simulations, forexample, in stellar collapse calculations. It contains
an adjustable nuclear force that accurately models both potential and mean-field interactions, and
it allows for the input of various nuclear parameters, some of which are not yet experimentally
well-determined. Theseinclude the bulk incompressibility parameter, the bulk and surface symmetry
energies, the symmetric matter surface tension, and the nucleon effective masses. This permits
parameterc studies of the equation of state in astrophysical situations . The equation of state is
modelled after the Lattimer, Lamb, Pethick and Ravenhall LLPR compressible liquid-drop model
for nuclei, and includes the effects of interactions and degeneracy of the nucleons outside nuclei.
Account is also taken of nuclear deformations and the phase transitions from nuclei to uniform
nuclear matter at subnuclear densities. Comparisons ofthis equation ofstate are made to the results
of the LLPR model and the Cooperstein-Baron equation of state . The effects of varying the bulk
incompressibility are also investigated .

Under the conditions of interest in the study of supernovae and neutron stars,
matter below nuclear densities is a mixture of nuclei, nucleons, leptons and photons .
The leptons and photons interact rather weakly and may be treated as ideal Fermi
and Bose gases, respectively . The main problem is to establish the state of the
baryons . At low densities and temperatures and provided the matter does not have
a large neutron excess, the baryons are bound in nuclei that are stable in the
laboratory, and experimental information about the properties of nuclei may be
directly employed . A Saha equation may be used to determine abundances for
matter that is in "nuclear statistical equilibrium" . For a larger neutron excess,
properties of the relevant nuclei can be extrapolated from laboratory nuclei using
the nuclear mass formula [cf. El Eid and Hillebrandt ') and Mazurek et al. 2)] . Under
extreme conditions, however, this extrapolation breaks down. At higher densities,
temperatures, or neutron excesses, the density of nucleons outside nuclei can be
large, and a consistent treatment ofboth nuclei and nucleons, including modifications
to the nuclear surface, is then desired . In addition, at finite temperature, nuclear

excited states become populated and must be considered. Below the critical
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temperature of nuclear matter, above which nuclei are unstable, consideration must
be paid to the phase equilibrium of the nuclear and nucleonic phases . Finally, in
dense matter the space between nuclei becomes comparable to the nuclear size
which leads to substantial modification of the nuclear Coulomb energy .

se effects have

	

n consistently incorporated into nuclear models in three
different techniques. Full

	

artree-Fuck calculations ofunit cells of matter centaining
one nucleus have

	

n calculated by

	

e ele and Vautherin 3 ) (at zero temperature)
the and Vautherin 4) and

	

of ") (at finite temperatures). Full Thomas-
e i calculations, in which simplifying approximations to the nuclear wave

are incorporated, have

	

n performed by

	

uchler et ol.') by Ogasawara
and

	

to 7) and

	

y Su

	

a ').

	

inally, unit-cell calculations using the finite tem-
rature compressible liquid-drop m ei for the nucleus have been computed

by

	

tti er et

	

") (hereafter referred to as LLPR. The latter approach, while
approximating that which is treated more exactly by the former approaches,
has the Artues that its results are in close agreement with these other approaches,
that it can

	

formulated as series of equilibrium conditions whose physi-
cal nature is readily apparent, and that it is significantly faster to compute.
Nevertheless, it has

	

n impractical, to date, to use even this approach directly in
hyd

	

ynamical simulations of supernovae, neutron-star births and neutron-star
decompressions.
To make an equation of state (EOS) practical, one has two alternatives : construct

a three-dimensional table of the relevant thermodynamic quantities as a function
o the inputs (p, T, Ye ; p, e, Ye; e, s, Ye ; or l', s, Ye ), or force further simplification
in the equilibrium conditions of a liquid-drop approach in order to speed up their
solution . The former task has, in fact, been carried out by Wolff 5) with the full
Hartree-Fork method, and by Lattimer'°) with the LLPR model. Some numerical
calculations have been performed using such tables [e.g., see the work of van
Riper ")] . However, the wide range of physical conditions, especially densities,
encountered require such a table to be quite large in order to be both accurate and
thermodynamically consistent . The extensive memory requirements for such a table
thus render this approach impractical .
The latter approach has been considered in detail by Cooperstein and Baron '2,13)

and by Lattimer and coworkers i4), and both models have been extensively used in
hydrodynamical modeling . However, the existing models do not include some of
the aspects of the LLPR model that we consider to be important . In particular, the
degeneracy and interactions of the nucleonic phase below nuclear densities have
been ignored, which may affect the phase transition to bulk matter and the properties
of matter through the nuclear dissociation region at high densities and temperatures .
The approach used in ref. 14) also neglects the nuclear compression . In the Cooper-
stein-Baron model 12,13), hereafter referred to as CB, the nuclear bulk and surface
thermal energies have been combined into an "effective mass' term, so that the
density and size dependencies of the nuclear specific heat are comprised, and, in
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addition, the temperature dependence of the nuclear size has been neglected.
Furthermore, the CB approach cannot be used for small proton concentrations as
are encountered in very neutronized matter. In this paper, we wish to pursue an
alternative approach to the earlier works, extending the model of ref. '4), which is
more directly coupled to the LLPR EOS.
An important modification to the earlier work that we wish to incorporate is the

ability to input such nuclear parameters as the bulk incompressibility parameter,
the saturation density, the surface energy, the nucleon effective mass and the bulk
and surface components of the nuclear symmetry energy and the nuclear level
density (i.e ., the specific heat) . Although some experimental information is
available concerning each of these parameters, surprisingly large uncertainties
currently exist concerning some of their values. In the previously mentioned equation
of state calculations, one could alter these parameters, but it is then necessary
to construct an entirely new table. However, if a sufficiently rigorous and rapid,
but thermodynamically consistent, approximation to the basic equilibrium
equations existed, studies could be carried out without the need to construct
tables and simulations with different sets of nuclear parameters could be directly
performed. A first step was taken with the CB EOS by Baron et al. "), by Bruenn Is)

and by Myra and Bludman '6), who examined the results of variations in the bulk
symmetry coefficient . However, the variations considered were inconsistent with
nuclear mass systematics.
Our approach in this paper is to follow the detailed calculations of LLPR,

further simplifying the free energy function of the finite temperature compressible
liquid-drop model and thus the equilibrium equations derived from its minimiza-
tion. We seek a form in which a lower order Newton-Raphson iteration is
achieved (the original LLPR model is 5-dimensional) and to ensure that the
results follow those of LLPR to a reasonable accuracy, for the same underlying
nuclear force . However, our model will contain the nuclear parameters previously
mentioned as inputs which can be easily, and consistently, altered . It will also
be straightforward to substitute any other model for the nucleon-nucleon force
provided that an expression for the energy as a function of density, temperature
and composition is available . In as much as the model presented here is able
to reproduce the original LLPR calculations, we have confidence that the
detailed results for other choices of nuclear parameters or forces will also
be faithfully represented . Our goal is to present our calculations as an
algorithm that is sufficiently rapid and flexible to be useful in many astrophysical
calculations .

In sect . 2, the model for the free energy is discussed, and the equilibrium conditions
are derived in sect . 3 . Sect . 4 details the solution ofthese conditions and the evaluation
of all the relevant thermodynamic quantities. In sect . 5 we make a detailed com-
parison of our results with those of the models of LLPR and CB. Our conclusions
are offered in sect . 6.
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2.1 . GENERAL CONSIDERATIONS

In the range of temperatures and densities that we are considering in this paper,
matter may be modeled as a mixture of electrons, positrons, photons, free neutrons,
free protons, alpha particles, and a single species of heavy nuclei. The alpha particles
represent the distribution of light nuclei that are actually present, while the single
heavy nucleus represents the average of an ensemble of heavy nuclei. The accuracy
of the latter approximation has been considered previously'), where it was shown
that therm ymamic quantities in the single-nucleus approximation differ from
those in the general se by at most a negligibly small amount. The electrons are
treated as non-interacting ultrarelativistic particles in pair equilibrium, and, as was
discuss

	

in LLPR, electron-screening effects may be ignored because the electron-
screening length is larger than the separation of the ions . Inclusion of neutrinos
nd muons and the effects of the rest mass of the electrons, all of which we will

neglect, may be easily performed because the thermodymamics of the leptons is
largely independent of that of the baryons. Although we will model the EOS to
arbitrarily high densities, our interest is mostly in the region below about twice
nuclear density . It is therefore not necessary for us to consider, at present, possible
additional physics such as pion or kaon condensation, hyperons, and the quark-
hadron phase transition.

In this model we assume that the different forms of matter are in equilibrium
with respect to strong and electromagnetic interactions. We do not assume the
condition of -equilibrium, since equilibrium with respect to weak interactions is
often not achieved within the timescales of many astrophysical phenomena .
The heavy nuclei, at densities well below nuclear density, are treated as being in

a b.c.c . lattice which maximizes the separation of the ions . In accordance with the
Wigner-Seitz approximation each heavy ion is considered to be surrounded by a
charge-neutral spherical cell consisting of a less dense vapor of neutrons, protons
and alpha particles as well as electrons. The volume of this cell is given by VC = n N' ,
where n N is the number density of heavy nuclei .
The balance of matter between the various phases is given by the distribution

that is most thermodynamically favorable for a given baryon number density n,
temperature T and proton fraction Y, . For a single representative heavy nucleus,
the seven free variables of the model governing this distribution are the number
densities of heavy nuclei (n N ) and alpha particles (nj, the number density and
proton fraction of nucleons outside nuclei (no and xo , respectively), the nuclear
radius (rN), and the nucleon density and proton fraction inside nuclei (n ; and x;,
respectively) . The additional variable considered by LLPR, the number of neutrons
in the neutron skin of the nucleus, is not relevant here because we are ignoring the
presence of the neutron skin . The consequences of this are discussed in sect . 5 . The
optimization is subject to the joint constraints of conservation of baryon number

2. The model
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and electric charge. Thus the model has five independent internal variables . The
most thermodynamically favorable state will be the one that minimizes the Helmholtz
free-energy density with respect to these variables . The minimization, done by taking
partial derivatives of the free energy with respect to these five variables, yields a
system five equilibrium equations which can then be solved for the equilibrium
values of the variables .
We adopt the convention of measuring all baryon energies with respect to the

neutron rest mass, in accord with LLPR. All Coulomb energies are included with
the nuclear free energy. Also, all temperatures and energies are quoted in units of
MeV, all energy densities and pressures are in units of MeV - fm- , and entropies
are measured in units of Boltzmann's constant .
The Helmholtz free-energy density can be written as the sum of the free-energy

densities of the individual constituents of the matter. Thus

F=F®+F~+FN+Fe+Fy ,

	

(2.1)

where F®, F,,, FN , Fe and F,, are the free-energy densities of nucleons outside nuclei,
alpha particles, heavy nuclei, electron-positron pairs and photons, respectively. As
mentioned previously, Fe and F,, are independent of the baryons, and will play no
role in the equilibrium equations .

In order to arrive at a set of equilibrium equations that can be solved via a
Newton-Raphson iteration scheme, it is necessary to specify the free-energy
densities . In general, one can reduce the dimensionality of the computational
algorithm, and increase the speed, by introducing approximations in the free ener-
gies . It is hoped that sufficiently clever approximations can lead to arbitrary close
agreement to the more exact solution represented by the results of LLPR. If
simplifications are made in the equilibrium conditions instead, thermodynamic
consistency is jeopardized, since thermodynamic equilibrium demands that the free
energy must be minimized exactly. In particular, if the free energy is not minimized
exactly, the pressure, entropy and "muhat", given by

P=n 2a(F/n)/anjTYe ,
s = -a(F/n)laTl,. yc ,

335

2.2

will be inconsistent . In this case the first law of thermodynamics

	

no longer be
satisfied, and an artificial buildup of entropy in numerical simulations will occur.
Nevertheless, if the free-energy function is simplified too much, in an attempt to
find simple equilibrium equations, the resulting EOS may not be very realistic. A
final consideration that influences the scheme will use is its overall speed, which is

dictated by the number of equilibrium equations and the quality of iterative conver-
gence . The algorithms presented in this paper, while representing some compromises
in the inicrest of computational speed, do not sacrifice any essential physics of

which we are aware .
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In a portion of the region of the density-temperature plane in which we are
interested, the differences from LLPR are miniscule since the electron, bulk nuclear,
and/or photon contributions dominate the free energy . These contributions are
treated in our model in essentially the same fashion as they were treated by LLPR.

e largest differences in the two approaches generally occur in the nuclear dissocia-
tion region in which the various baryon abundances undergo rapid changes.
As has been known since the pioneering studiesof neutron-star matter'), a phase

tr=ansition u at about one-half the nuclear density (n, = 0.16 fm between the
phase with nuclei and a uniform bulk nuclear matter phase. This phase transition
was found to be first order, sin

	

it is accompanied by a small energy change. Later
studies ") have indicated that this abrupt transition may be smoothed by a series
of smaller transitions (to bubbles, spaghetti, lasagna, etc.), which would have the
effect of further softening the

	

OS in this region . Nevertheless, a significant phase
transition f

	

a distort

	

nuclear (or inside-out bubble) phase to the uniform bulk
phase remains.

	

e adiabatic index of the matter is very sensitive to how this
transition from nuclei to bulk matter is taken into account, and, given the importance
of the adiabatic index in hydr

	

ynamical calculations, we will treat this transition
as exactly as possible. This is done by modifying the Coulomb and surface energies
of the nuclei to include distortions in the nuclear shape and the appearance of
bubbles, and by including an explicit Maxwell construction between the nuclei
phase and the bulk nuclear matter phase at fixed temperature and Ye . The limiting
densities and temperatures of the two phases, i.e ., the phase boundaries, are com-
puted during the initial call to the equation of state and stored in tabular form. We
emphasize that an alternative approach of artifically smoothing thermodynamic
quantities across the phase transition is incorrect, and misrepresents the pressure
and the adiabatic index in the transition region .

2.2 . NUCLEAR PARAMETERS

There are a number of nuclear parameters that the equation of state will include.
All of them, in principle, can be experimentally determined, but, in practice, some
of them have relatively large uncertainties . They may, alternatively, be calculated
from a given nuclear force by modeling heavy nuclei . Since matter -in laboratory
nuclei is cold ( T= 0), nearly symmetric (x; = Z/A =2), and close to the saturation
density (ns = 0.16 fm -3 ), it is customary to write the following expansion for the free
energy per baryon, fbulk, of bulk nuclear matter :

fbulk(n, x, T)=-B - ®x+i8Ks(1-n/ns)2+S �(1-2x)2-a,,T2 + . . . ,

	

(2.3)

Here, 4 is the neutron-proton mass difference, 1 .293 MeV, and must be included
because our energy is measured with respect to the neutron rest mass. We can
identify the following parameters :
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(i) ns - The saturation density of symmetric nuclear matter. Values in the range
0.145-0.17 fm-3 are commonly assumed. We will employ in our standard calculation
the Skyrme I' force value of n, = 0.155 fm-3.

(ii) B = fbulk(ns s 2 s 0) - i0 - The binding energy of saturated, symmetric nuclear
matter. Values for B, derived from nuclear mass formula fits 2' .22), lie in the range
15.85-16.2 MeV. We will employ in our standard calculation the Skyrme I' force
value of B =16.0 MeV.

(iii) KS=9ns(e`fho1k/an
2

)I �� ,®2.o-The incompressibility of bulk nuclear matter.
Estimates in the literature are in the range 150-300 MeV [refs. 23-26)] . The Skyrme
I' force `'') used by LLPR has KS = 375 MeV, and for comparison purposes we have
employed this value in this paper in spite of the fact that it seems unrealistically
high . However, we present results from the more realistic values KS=220 and
180 MeV in sect . 6 .

(iv) S`. =Ra2fhu1k/ax 2 )I�� I> :!, o - The symmetry energy parameter of bulk nuclear
matter. Estimates have been derived from mass formulae 21 .'`8.29,2'`-) and from the
energy of the giant dipole resonance 30) and range from 27.5 to 36.8 MeV. We will
employ in our standard calculation the Skyrme I' force value of S. = 29.3 MeV.

(v) a � _ -1(a2ft�,t~/a 2 T)I �� , ®2 , ® - The bulk level density parameter. Using the fact
that nucleons are nearly degenerate, nonrelativistic fermions, it is given by

2m*

	

n. )2/3
a.; =

	

2

	

12n

	

.-;;m*/m MeV-' ,

	

(2.4)
h 2 s

where m * is the nucleon effective mass for saturated, symmetric matter. Determina-
tion of nuclear-energy levels from Hartree-Pock calculations 31) and the position
of the giant dipole resonance 30) imply that m* is somewhat less than the bare
nucleon mass m, m*/m -0.7-0.9 . However, nuclear-mass fits 32), fission-barrier
fits 33) and the reproduction of the density of single-particle energies near the Fermi
surface 34) argue instead that m*/m ---1-1.2 . Although the force Skyrme I' has
m *1 m = 0.9, we will take m *1m =1 because of computational simplicity . This has
very little effect on the comparison between our results and those of LLPR.

In its simplest form, the liquid-drop model for an isolated nucleus may be written

fN -fhuIk+fs+fC

	

(2.5

where the surface energy per baryon is fs(n;, x;, T) _ (41rrN/A)Q(x;, T) and the
Coulomb energy per baryon is f(-(n;,xi )= 3Z2 e2/(5rN A), where A=?~rn;rN . The
Coulomb energy is independent of T. The surface tension Q may be expanded in
a fashion analogous to the bulk energy :

f,A=41rr2 u(x;, T) =41rro-(;,0)-A2/3[SS(1-2x;)2+a,,T2]+ . . . .

	

(2.6)

Note that there is no dcpendence of cr upon density (n;) because the bulk nucleon
fluid inside the nucleus 'is in equilibrium with that outside the nucleus (in this case,
a vacuum). The equilibrium is only possible for one :value of n ; for given values of
x ; and T. Thus, the surface nuclear parameters are
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(vi) a,= a(~, 0) - The surface tension of symmetric nuclear matter. Values are
again derive

	

from nuclear-mass formula fits2',-'x,-9,") and values in the range
1.34

	

eV - fin

	

have been obtained . We will employ in our standard calcula-
tion the Sky

	

e I' force value of a',=1.15

	

eV . fm-3.
(vii) S,= -!A"'

	

11,o-The surface symmetry energy parameter. From
the fitting of nuclear masses it is known that a strong correlation ;`) exists between
values of S,, and S,

Estimates from nuclear-mass formula fits

	

lie in the range 1S-1S0 MeV. We
ur standard calculation the Sky

	

e I' force value of S, = 45.8 MeV.
The surface level density parameter. This is

similarly to a,. and typical values lie in the range 0.05-0.2 MeV- ' .

well employ in

defin
To summarize, our equation of state requires specification of the above S par-

ameters. However, is to nuclear masses, and theory, constrain the realistic ranges
fthese parameters. (For example, as we discuss in sect . 2.6, a theoretical relationship
may be found which connects the values of K� cr� and a, .) In particular, the
members of the pair (B, a,), (S,, S,) and (K� a,) cannot be treated independently :
a choice of a value for one member restricts allowable values for the other . Thus,
in practice, only 5 of these parameters can independently affect the equation of
state . We now consider in turn the free-energy densities of each of the constituents
of matter.

A
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S, -

	

(3ïjS,

	

eV)"-"	eV.

2.3 . BULK ENERGY OF NUCLEONS

One aspect of LLPR that is essential to a consistent treatment of both nucleons
and nuclei is to determine the bulk portions of their free energies from the same
function ofdensity and temperature . Whereas LLPR used for this function a standard
momentum-dependent Skyrme-type parameterization 27) which treats nucleon-
nucleon interactions as being local, we will employ a simpler momentum-dependent
potential model. The parameters of this interaction hamiltonian will be determined
by the properties of zero-temperature symmetric nuclear matter at its saturation
density n,, namely the binding energy E� the bulk symmetry energy S,,, and the
bulk incompressibility parameter KS . It reproduces the thermodynamic properties
of bulk nuclear matter accurately for any Skyrme-type interaction . With a small
modification 36) to allow for finite-range effects, it can approximate forces with more
complicated momentum dependences, such as those of Gale et al. 37), Gogny 38)

and Welke et al. 39 ), at least in the density regime below twice nuclear matter density.
It should be emphasized that this or another nuclear force model may be easily
substituted for the one we have chosen in this paper . The resulting algebra may
become more complicated, but, in principle, the technique for calculating the EOS
will be essentially unaltered . Much of the following treatment follows the work of
Lattimer and Ravenhall 27) .
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The bulk internal energy density of interacting nucleons at finite temperature will
be approximated as

Ebulk(n,x, T) =y_

	

2
~+[a+4bx(1-x)jn2+cn°~~-xn®,

	

(2.8)2m,

where the first term contains the non-relativistic fermion kinetic energies (t, the
isospin, is n or p), the second term represents two-body interactions and the third
term the influence of multibody interactions . Here, x = np/n and n = n,,+ np are the
proton fraction of the matter and its total baryon density, respectively. e quantity
m* is a density-dependent effective nucleon mass, which incorporates the force's
momentum dependence. It can be adequately represented in the same way as for
Skyrmc forces as

h 212m*= h212m+a,n,+a2n_,,

	

(2.l)
where a, and a2 are constant parameters and -t is the opposite isospin of t.

	

e
constants a, b, c and S are parameters of the nuclear force, and will be determined
(see below) from a given set of experimental inputs. Again, the last terns in eq. (2.g)
arises because we choose to write all energies relative to the neutron rest mass m, .
The entire temperature dependence of the nuclear force is implicitly included in

the nucleon kinetic energy densities T� which are
1 2m*T 5%2

Tr=2~ ,,,2

In this expression, F; is a Fermi integral :

F3/2( 711)- (2-10)

x

F;(71)= f u'[1+exp(u-7i)]-'du .

	

(2.11)
0

These integrals (and their inverses, see eq. (2.15) below) are solved by spline
interpolation among values taken from the CERN subroutine library . To ensure
thermodynamic consistency, accurate fits (to about 1 part in 104) are necessary. The
degeneracy parameter q, is related to the chemical potential M-, and the force's
potential V, via

,7r = ( .ur - V,)/ T,

	

(2.l2)

VI -
SEbulk

	

=alT,+a2T_,+2an+4bn_,+c(1+S)n «' -®S,P . (2.l3)
Sn,

	

T., TP , n_,

Here, S,p is the Kronecker delta . The parameter q, is itself related directly to the
densities and temperature :

1 2m*T 3/2
n, -

ZTr2 ( b2 )
FI/2071) (2.14)

Inversion of this relation yields

rl, = Fl/'2[2lr`n,(h 212m*T)3/2
] , (2.15)
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which enables evaluation of thermodynamic quantities from knowledge of n, and
e entropy per baryon may be written 27)

and the bulk free ever,

The pressure may
.! t'ulk =

	

tlulk/

	

- Tst,utk

und from

bulk = n-(

	

tautk/an) =1: n,IA, - n hulk

=Y(5b2/6 *-b2/2m)T, +[a+4bx(1-x)]n:!+cân"6 .

	

(2.l8)

e nuclear force parameters are evaluated by reference to laboratory nuclear
matter, that is, zero-temperature, symmetric nuclear matter at its saturation density .
n the case of T= 0 and x = 0.5, the bulk energy, pressure and incompressibility
(K = 9

	

/dn) become

5h2
T,

Sbulk=Y 6m*T-n,7y, na

	

(2.l6)
, (

per baryon is

bulk/n=a(n/ns)A~"+(a+b)n+cn°'- ;,d , (2.19a)
T=O, X=~ . (2.19b)

(2.19c)
Here a = (3 b-/ 10m*)(v-ns)-" and m~ = m,* = m* for symmetric matter. The sym-

Ik/n = a(n/n,)''3+(a+b)n+c8n`',

bulk Ta(n/ns)''' 3+2(a+b)n+cS(1+S)n s

(2.17)

metry energy is adequately represented for most interactions 36) by the difference
between the neutron matter energy (Ebulkl �, . _r=O, T=o) and the symmetric matter
energy (Ebutkl�� ,=t/2. T=O +21A --- -B). Therefore, we have for the bulk symmetry
parameter

1

	

a''ES`. _

	

I

	

'bulk

	

-a (22/3_ 1) - bns .

	

(2.20)
8n

	

a`x

	

�_x=1/2, T=O

At the saturation density n,, the zero temperature, symmetric matter pressure
vanishes . The parameters a, b, c and s may now be determined from the experimental
parameters ns , B, Ks= Kbulkl nti , r=;, T=O, m * and S�

For the purpose of choosing nuclear force parameters for the calculation described
in this paper, we will assume, for simplicity, that m* = m and a, = a2 = 0. We will,

s
K,+2a-

'
(2.21a)

3a +9B
b=[a(22/3_ 1)-S �]/n,, (2.21b)

ns(1 - s)

K,+2a
c
_
9î6(s-1)n" . (2.21d)
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however, keep the effective mass terms in the equations that follow, so that the
generalization of this assumption can be seen . We emphasize that this assumption
has little effect on the equation of state below nuclear matter density, since the
change in the effective mass with overall density n is negligible. One should not
confuse the effective mass with the effective density dependence ofthe specific heat
contribution from *he surface "3), which is explicitly included in our formulation
(see the next section). With the further choices B =16 eV, n. = 0.155 fm-3, KS =
375 MeV and S� = 29.3 MeV, which will match the Skyrme I' parameter set used by
ref. 9 ), we find S = 2.002, a = -285.1 1VieV - fm3, b = -107.1 MeV - fm3 and c =
968.01VIeV - fmb.
The multibody parameter S is necessarily restricted to values greater than unity.

Otherwise this term, rather than the two-body term and/or the kinetic energy term,
will dominate the energy at low densities, which is unphysical. In general, since
KS > 2a, eq. (2.21 a) shows that S is roughly proportional to Ks. For the values of
B, n, and S, chosen above, the effective interaction given by eq. (2.8) is thus limited
to a symmetric matter incompressibility parameter K5 ,1(ß eV, assuming aI =
02= 0. Although this value seems to be well below recent experimental measure-
ments, this restriction should be kept in mind. The inclusion of additional terms in
eq. (2.8), such as the effects of finite-range forces, however, can remove this
restriction.

2.4. NUCLEONS OUTSIDE NUCLEI AND ALPHA PARTICLES

Outside the heavy nuclei, there is a gas of nucleons and a-particles. We take into
account interactions between this gas and the nuclei by excluding the gas from
occupying the nuclear volume. Similarly, we take into account interactions between
a-particles and the nucleon gas outside nuclei by treating the a-particles as hard
spheres of effective volume v,,, = 24 fm-3. These approximations and the magnitude
of v,, are discussed in more detail in LLPR. We will see below, in sect. 3.1, that the
inclusion of the a-particle excluded volume is not only physically reasonable, but
also practically motivated.

Defining u = VN/ Vc as the fraction of space occupied by nuclei, where VN is the
volume of a single nucleus, the fraction of space available to a-particles is just 1- u.
The volume fraction occupied by a-particles is then (1- u) n,,va , where n', is the
number of a-particles per unit volume in the space outside nuclei . As a result, the
volume fraction available to nucleons outside nuclei is

1-u-(1-u)n,,v,, =(1-u)(1-nav,,J .

	

(2.22)

The free-energy density of the outside nucleons, obtained from eq. (2.17), may be
written as

F.=(1-u)(1-nav�, )n.fhu lk(n.,x., T)=(1-u)(1-n�v�)nofo,

	

(2.23)



where fo=fbuak(n®, x., T).

	

e subscript o will generally refer to outside nucleons.
'e will find it more convenient to use nn® and npo , instead of n® and xo to refer to

the outside nucleons.
e alpha particles are treated as non-interacting Boltzmann particles :

we
nucleons .

su
th
write

where

= 28.3

	

eV is the binding energy of an alpha particle relative to free
lpha chemical potential is
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=(I-u)nj~=0 - u)n.( .- . - T),

	

(2.24)

e contribution to the f

	

energy density due to heavy nuclei consists of bulk,
hc , Coulomb

	

d t nslational contributions . Electrostatic contributions from
igner-Sei

	

approximation are included with the Coulomb contributions . We
e free-energy density as

~e have used the abbreviation nQ=(mT/2-x');"2 . We also note that the alpha
pressure is just

	

,, = n.T

fN=Fbulk,à+FS+Fc+FH

= T In (nJßnQ) . (2.2s)

= AnN(. buAk(ni a x®a T)+.fS+. c+.ÎH) = un;(.f,+.fS+fc+fH)

	

(2.26)

is the baryon number of the average nucleus . Our notation is that upper
case F's are free-energy densities and lower case f's are free energies per baryon.
In the right-hand side of eq. (2.26) we have made the substitutionsf,=fbulk(n ;, x;, T)
and A = n; VN , the subscript i referring to nucleons inside the nucleus . The nuclear
radius is rN , defined by VN --- 3~rN . Note that the bulk energies of the nucleons
both inside and outside nuclei are calculated with the same energy expression. We
now consider the finite-size (non-bulk) contributions to the free energy of heavy
nuclei .

The surface contributions are taken from LLPR with some modifications . The
relevant calculation is to find the surface tension between two infinite slabs of
nuclear matte. : a dense phase representing nuclei, and a light phase representing
the nucleon vapor . Because of the conditions of bulk equilibrium across the surface
between the two fluids, the surface tension o- for a given temperature is a function
of only one of the four variables n;, x;, no and xo . As in LLPR, we thus choose, to
parameterize v in terms of x; and T alone . Like LLPR, we have neglected the effects
of curvature on the surface energy . In contrast to LLPR, we have chosen not to
explicitly include the neutron skin of the surface in our model . To do so would
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require the use of a higher-dimensioned Newton-Raphson iteration scheme. Thus,
we parameterize the energy in terms of the average value of the proton fraction,
x; =Z/A, in the nucleus, rather than in terms of the central value of the proton

fraction . Thus, as shown in LLPR and Kolehmainen et al. 4° ) the surface thermo-
dynamic potential in LLPR's calculation plays the role of the surface free energy
here. The net result is that the total symmetry energy of a nucleus may be written
as A(1- 2x;)2(SV - SSA-'/3), compared to the expression A(1-2x;)2S2/(S,, +SSA®1®3)
which follows from an explicit treatment of the neutron skin . (We note that these
two symmetry energy expressions are identical to the forms found in the nuclear
liquid-drop model and the nuclear droplet model, respectively .) In the limit A -3 00,
these forms are equivalent. However, in the laboratory or presupemova star situ-
ations, in which 4< A'®3< 10, differences are apparent. At least, some of the large
spread in published determinations of values of Ss relative to S� is due to thism
dependence.

We have used the results ofThomas-Fermi surface calculations 4') to determine
the full x; and T dependences of the surface free energy per unit area. We have
found that, with slight modification, the functional form used by LLPR for the
Skyrme I' force is valid for general energy functionals of the form eq. (2.8) . We use

T
u(x;, T) = Qsh

	

3

	

16+g

	

_3 MeV - fm-,̀ ,	(2 .27)xi +q+(1-xi )
where the temperature dependence is taken to be

T

j[J -(TI T

~(x
i
)

	

0

	

T> Tc(x;)

Note that a,= o,(0.5, 0) . It is easily found that q is related to the surface symmetry
coefflicient by

q = 384wrôQSISS -16 ,	(2 .29)

where ro= rN/A'i3 =(3/41rn5)' /3 . Tc(x;) represents the maximum temperature, for
a given x;, for which the nuclear phase may coexist with the nucleon vapor. Tco= TC(z)
is the critical temperature of symmetric nuclear matter, which can be determined
by the relations

apbulk

	

a 2pbulk
an

	

x-1/2

	

an 2
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(2.28)

(2.30)

T,,o is essentially determined a2) by KS, m* and ns, such that T.oa

	

KS/m*ns'i3 .

We have found that Thomas-Fermi surface calculations are well approximated by
the relation Tc(x;) = 4 Tcax;(1- x;) . Combining these results, we approximate T,(x;)
by

KS

	

)1/2 0.155 fm-3 '
T,(x;) = 87.76

	

375 MeV

	

ns

	

x;(1-x;) MeV .

	

(2.31)
(

	

-
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The exact relation between Try, and

	

� and the approximation eq. (2.31), are shown
in fig . I for the case n, = 0.16 fm--' and m* = m.
The particular form for h( TI Tc) we use has the property that its temperature

derivative vanishes at Tc. This ensures that surface contributions to the entropy
leappear as T-+ T, Although the T and yj dependences of h are not the same as

in ,the differences are not important. Note that the surface contribution to
the nuclear snecific heat is

17. COU..

20

15
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5
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I

which, according to eq.X2.31), is proportional to cr,m*/
summary, the ftee energy per baryon of the surface will be written as

(232)

4=2	T)

	

3cr(xi, T)N

A rNni

	

(233)

The Coulomb contributions to the free energy of nuclei in the low-density,
low-temperature limit may be derived using the Wigner-Seitz approximation ").
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Fig. 1 . T,.. versus bulk incompressibility parameter, K., .
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This can be written as

3 2
e
2

- Z
.Î=

	

D(u) = Sire -x®r2n;D(u) ,
SA rN

)

where e is the electron charge and D(u)=1- ?u "'+ 2u. In contrast to the treatment
of LLPR, we have neglected screening effects of the vapor of protons and alpha
particles, so the effective nuclear charge is just Z. This is justified except, perhaps,
in situations in which the vapor density of protons and alpha particles is large, that
is, near the maximum temperature Tc. However, in such regions the electrons and
the vapor will dominate the free energy and thus the neglect of the screening will
not significantly alter the overall thermodynamic properties of the matter. e will
neglect thermal (plasma) corrections to the Coulomb energy, but these also are of
little significance except when the Coulomb parameter rc-=Z2e'u'/3/(rN T)< 10.
Although Fc is about 10 in the core of a massive star prior to its gravitational
collapse, it rapidly increases once collapse begins . Small Coulomb parameters may
again be encountered during the formation of a protoneutron star, but in such
situations the thermal energies of free nucleons will dominate the energies of the
nuclei .

2.8. NUCLEI, BUBBLES AND OTHER PHASES

As was first discussed by ßaym et al. °g), it becomes energetically favorable near

2ns for the nuclei to turn "inside-out", that is, for a system of relatively low-density
neutron bubbles immersed in a dense proton-rich phase to replace the dense
proton-rich nuclei immersed in a low-density neutron-gas phase. In the special case
of three-dimensional bubbles, the total baryon free-energy density will still take the
form of eq. (2.1), but Fo will now refer to the nucleons inside the bubble, the
finite-size terms of FN will refer to the bubble, and the bulk part of FN will refer
to the dense matter outside the bubble. Alpha particles will be confined to the region
inside the bubbles . Letting u remain the filling factor of the dense phase, x; and n;

the proton fraction and nucleon density of the dense phase, and VN the volume
occupied by the dense phase, FN can be written as

FN = n;[ufb�,,k(n ;, x i , T)+(1-- u)(fs+fc+fH)]

	

bubbles .

	

(2.a5)

The surface and Coulomb terms will in this case become

oo,(x;, T)
.fs=

	

rBni
,
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(2.34)

(2.36a)

.Îc = 4 1re2x?rBn;D(I - u),

	

(2.36b)

where D(l - u) = 1- !(I - U)1/3 +!(I - u) and rß is the radius of the bubble . It is
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seen that the bubble surface and Coulomb energy densities are obtained by replacing
u in the nuclear surface and Coulomb energy densities (un;f, and un;fc, respectively)
y ®u.

us, in the absence of the effects of compression, curvature and translation, the
transition between nuclei and bubbles would occur at exactly u = ;, which corre-
sponds to the density ; ~ Ravenhall et al. -'0 ) showed that several additional distinct
phases of rod-, tube- or plate-like matter might also be energetically preferred,

inning at densities as low as on,- Moreover, it is unreasonable to expect that
the nuclei will remain spherical in the subnuclear regime . Undoubtedly, the actual
situation is quite complicated in this regime; a mixture of a number of phases of
matter will exist at densities just below n,.

It is thus unrealistic to describe matter via the procession of simple phases we
have referred to as "'nuclei", "`bubbles" and "bulk" as the density is raised . We will
include such distortions in the nuclear shape by introducing shape parameters for
both the surface and Coulomb energies . These shape parameters will be assumed
to depend only upon u, the filling factor of the dense phase, and not upon the
underlying nuclear force, upon Ye , or upon 7: We assume that the generalized
surface and Coulomb energy densities are

FS
~=3-S(u) ar

Fc-=,7re2X n;r`'c(u) ,	2 .37)

where s(u) and c(u) are the shape parameters and r represents the generalized
nuclear size . For example, for three-dimensional spheres, r is equivalent to either
rN or r$ , depending upon whether the energetically favored shape is nuclei or
bubbles; for the one-dimensional configuration, r represents the sum of the thickness
of the slabs.
The functions s and c are chosen to simulate the gradual transition from nuclei

to bubbles as in the scheme of Ravenhall et al.`°) . If we could assume that the only
nuclear energy terms that will depend upon r are the surface and Coulomb energies
F, and Fc , then it becomes straightforward to determine r as a fünCtion of the other
nuclear variables (see eq. (3 .2a) below) . The bulk energy density Fbu,k, ; is, of course,
independent of r, but the translational energy density, FH , is not . However, FH is
generally small compared to the other nuclear energies, and we will therefore
approximate FH so that it is independent of r (see the next section) . Assuming that
only F, and Fc depend upon r, minimization of F, + Fc with respect to r will result
in F, = 2F,,, which is the nuclear virial theorem of Baym et W8). This equation
may be solved for r :

15o-s(u) 1/3 _ 90- s(u) 1/3
r=

81re2x?n?c(u)

	

_
2ß

	

c(u)

	

Il ' (2.38)
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which defines the quantity ß. The sum Fs+Fc may be expressed as

347

Fs+FC. = ß[c(u)s(u)-]'J3 --- ßq (u),	(2 .39)

which defines -9.
In the low density (nuclei) limit, in which u -, 0, we have from eqs . (2.26) and

(2.34) that _9( u) --), u[D( u)]'/3 ; in the opposite (bubble) limit, u-+ l, we have from
eqs. (2.35) and (2.36b) that 9(u)-+(1-u)[D(1-u)]'/3. We seek an analytical
interpolation for -9 to connect these limits and to accurately represent, at zero
temperature, the results of Ravenhall et a1. -'0 ) .

Cooperstein and Baron '2) have bridged these regimes with the expression

96(u) = u(1- u)([D(u) ]'°3+[D(1-u)]'®3) , (2.40)

which has the right functional and derivative limits . Howe,er, this particular
expression overestimates the finite-size energy by between 5% and 8% in the interval
0.008 < u < 1 .0, compared to the results of ref. 2° ) . Moreover, the Coulomb lattice
pressure derived from eq. (2.40) differs from that of ref. -®) by as much as 20%,
even at relatively low densities (u = 0.01) where the expression S~ = uD'®3 is "exact"
[see fig . 2] . One can compare this to the situation in which the bubble phase is
neglected altogether (i.e ., using 1.30 = uD'/3 throughout) : the finite-size energy is then
overestimated by less than 5% for u < 0.4 and by more than 15% for u > 0.7; but
the lattice pressure is better approximated than by using eq. (2.40) as long as u < 0.6 .
Overall, a smaller error would be made, except in the narrow region 0.6 < u < 0.8,
by ignoring altogether the effect of the bubbles and other distorted nuclear shapes
as given by eq. (2.40) . But it is this latter regime that is important in fixing the lower
boundary of the phase transition to uniform nuclear matter.
We have found a more accurate analytic formula that better describes the energy

and pressure :

9(u)-u1-u) (I-u)[D(u) ]3 +u[D(1-u]'/3 . (2.41)
u +(1-u)2+0.6u (1-u)

2

The factor of 0.6 in the denominator is an adjustable parameter determined by
minimizing the differences in the energy and pressure compared to the more sophisti-
cated calculation of Ravenhall et al. 2° ) . Eq . (2.41) has a maximum error in the
finite-size energy and pressure of 1% and 4%, respectively, compared to ref . 2° ), as
displayed in fig . 2 . It is important to emphasize that the u dependence in eq. (2.41)
represents the result of competition among various phases of finite nuclei, and, at
least in the approach of Ravenhall et al., does not depend on the nuclear force
parameters such as the incompressibility or the nuclear level density . It is important
to note that thermal corrections to the Coulomb energy are not included ; if they
were, 2 would also become temperature dependent. Because Tc ~> l in almost all
situations, this is a fair approximation .
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Fig. 2 . Baryon energy and baryon pressure for cold symmetric matter . Solid curves are from Ravenhall
et al. 2° ) ; dashed curves are obtained from eq. (2.41) . (a) Difference of energy per baryon of uniform

matter and nuclei phases . (b) Baryon pressure/ density ratio .
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Our expression for the nuclear energy cannot, in general, be used all the way to
u = l . As demonstrated in sect. 3.3, a phase transition to bulk matter still exists, and
this occurs for u < l . The phase boundary is determined vy a Maxwell construction
between the nuclei phase and the uniform matter phase, which occurs, depending
on Ye, T and the nuclear force parameters around u =0.5-0.99.

2.9 . TRANSLATIONAL ENERGY OF HEAVY NUCLEI

If we were to assume that the heavy nuclei were point particles of massA =4

	

ni,
with a statistical weight factor of unity, then the translational free-energy density
would be

where

349

is the translational chemical potential of the heavy nuclei. LLPR included three
corrections to this formula: an effective mass, or "backilow", correction, an excluded
volume correction, and a temperature reduction factor. We will not include the first
two effects, which take into account that the nucleus is not immersed in a vacuum
and that the volume available for translation is reduced from the entire cell volume
Vc=1/nN . We will, however, multiply the translational free energy by a factor h,
to account for the fact that considering the center-of-mass motion of the heavy
nuclei to be that of a point particle is not valid near Tc .

There is an inherent dependence on the nuclear size in the translational energy,
which will complicate the equilibrium condition obtained from minimizing the free
energy with respect to the size, r. This condition may be solved explicitly, however,
if one can ignore this size dependence, and in this spirit, we will simply assume
that in the translational energy only A=A., a constant we choose to be 60. We
emphasize that this approximation is made only in the translational energy and
nowhere else. This approximation is most unrealistic at high temperatures, where
translation may reduce the nuclear size by 25% or more. However, the effect on the
pressure and chemical potentials is always negligible, and we can justify this
approximation on this basis . In applications in which a more precise evaluation of
the nuclear size is needed, as perhaps in calculations ofthe coherent neutrino-nuclear
scattering mean free path or the nuclear electron capture rate, corrections to A
which incorporate translational effects could be developed .

In contrast to LLPR, who neglected the translational contributions to the energy
of the bubble phase, we will employ eq. (2.42) for all shapes (and, therefore, all
values of u), by using the interpolation n N = u (1- u)n;/ Ao in the definitions of FH

FH = A' (pH - T) (2.42)

nNpH= T ln (
nQA3®2 (2.43)
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tional contributions in the limit u -+ 1 (the bubble limit)
are very small, this procedure will have little effect on the results, but will avoid
the s

	

all unphysical

	

iscontinuity that arises from the total neglect of the bubble
translational energy .

	

us, in summary, the total translational free-energy density is
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In general, the free- nergy density must be minimized to find the equilibrium
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r baryon number and charge . These equationsinclue the conservation equations f
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n,,o)(1-n~vo)] ,

	

(3.1a)

- n ~o }

	

-

	

(3.1b)

ire may choose any five independent variables to carry out the minimizatio
we have chosen r, n;, x;, u and n,, . Minimizing, in turn, the total free-energy density
F with respect to each of these variables, subject to the constraints (3.1), results in
the following equilibrium equations :

2~t3~x-~'

	

(1- u )
+~ni - 3un;cr Ao

(3.2a)

~ }
Ao h'(IUH-T} -I o~ (3.2b)

[huH -xih '(Ahi - T)]
_-"` Ano (3 .2c)

hI£H=Po+Pa, (3.2d)

- (3.2e)



The functions ß and 9(u) have been used to simplify eqs. (3.2b)-(3.2d). In eqs .
(3.2) we have also used the notation A --- An-Ap� V= a9 (u)/au, and h' = ah/ax;.
These relations are simply interpreted as the equation optimizing the nuclear size,
the equations describing the chemical potential and pressure equilibria of the two
fluids, and an equation describing the chemical equilibrium of the alpha particles
with the nucleons .
Eq. (3.2e) now makes clear why the inclusion of the volume excluded by the

a-particles is necessary. At supernuclear densities, the potential energies Yn and p
become positive, reflecting the repulsive multi-body term (en''r' in eq. (2.8)) .
forces MAn and Ap to become more positive, and if the P®v. to

	

in eq. (3.2e) was
neglected, A,, would also become large : a-particles would dominate at these
densities. However, P® also becomes large and positive, and forces down the values
of AQ and n,,. Therefore, the a-particle fraction actually tends to zero in the
high-density limit .
The nuclear size r has been effectively eliminated from the equilibrium equations

by the use of eq. (2.41), and it is not needed to determine the thermodynamic
properties of the matter. Note that r does not appear in eqs . (3.2b)-(3.2e). However,
the nuclear size is required in some applications, such as the calculation of the
neutrino opacities . To determine r, we need to sped:y the combination s(u)/c(u),
while 2(u) represents the combination [C(u)s(u )'] 1

/3 . A reasonable approximation
is to use the simple interpolation s(u) = u(1- u), which leads to

3.2. THERMODYNAMIC QUANTITIES
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Is

(3.3)

which has the correct limits in the cases u- Q and u - 1 . This expression is a moderate
overestimate of r in the vicinity of u - 2 . Note that the use of an approximate value
for r does not lead to any thermodynamic inconsistencies.

We may calculate the other thermodynamic quantities from F using eqs . (2.2) .
We obtain

aF/ n
Me - a Ye

-

aF Ye aF
an . n aYe An -Ano~

- aF
=ns=un;s ; --

2,82 + FH

	

ah -- u(1-u)nih (~-AH/T)
aT

	

( 3h

	

h )âT

	

A,,

+(1-u)(1-n,,v,,)noso+(1-u)n,,(2-t,,,/T)+n(se+s,,),

(3.4a)

(3.4b)

(3.4c)



(3.
tin
(bulk ui

s in

s one
or vanor

3.3. HASE TRANSITION
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erive by incorporating appropriate combinations of
(3.2).

	

e terms

	

e, se and P, s,® refer to the electrons
ndix C).

	

e Coulomb lattice contributions to
).

	

e major contribution to the nuclear
="NT, as expected for a Maxwell-Boltzmann

ould be noted that, in the limit u -- 1, the Coulomb and translational
(3.4e) vanish, while in the limit u -* 0, the contributions in eq.

ese properties guarantee that thermodynamic variables are con-
;oes from the two-phase (nuclei plus vapor) regime to the one-phase

us alphas) regime.

e last two equations we
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the pressure are clearly seen in eq. (3
t ns ational pressure is just un® T/
gas ofnuclei. It s
n ibuti

-1-
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2 r
(1-u)

+ u(1-u)n®h(jzH+T)+Pe+P,, .
3u

	

A®

n,
+

tln,
~ h[T(1-u)-u;4H]+Pe+P,,,

	

(3.4d
n

ETWEEN NUCLEI AND UNIFORM MATTER

(3.4e)

ne can easily demonstrate that a transition from the nuclei phase to the uniform
matter phase occurs below nuclear density. Write the finite-size energy density in
the form

	

(u), viz, eq. (2.41). For the bubble phase, therefore, we have 9(u) =
(1- u)[

	

(1- u)]°i - . The uniform matter's energy per baryon can be expressed using
the customary expansion about the saturation density :

El,.ak(n' n=-16 +,'-gK,(n/n,-1)2,

	

(3.5)

where KS is the incompressibility parameter. If we ignore the existence of vapor
nuclcons inside bubbles, and the slight compression of the dense phase due to the
finite-size energy terms, we have n = un; and n; = n, . Thus the bulk energy per particle
for the bubble system is f, = -16 MeV. Equating the energy per baryon of the bubble
phase (i.e ., f-, + 13-9/ n) with that of the uniform matter phase (eq . (3.5)) gives an
implicit expression for the mid-point of the phase transition (the leptonic energies
are the same for both phases and may be ignored) :

u -1-
18~8~(u) -1- l8ß [D(1- u)]'/3
u;s n s uKSns '

(3.6)

which shows that, besides the obvious solution u = 1, a solution with u < 1 also
occurs . With ß/ n; = 7.1 MeV and ,-gK, = 20 MeV, we find u = 0.72 . Clearly, the
nuclear force parameters, the temperature and the composition of the matter will
together determine the phase boundaries .
We will assume that matter is in thermal equilibrium . Nuclear and electromagnetic

rates are e tremely rapid compared to dynamical times in any realistic application .



Thus, matter on both sides of the phase boundary will have the same temperature,
not the same entropy. The densities defining the phase-transition boundaries, of
and nh, are thus found by minimizing the free-energy density in the phase-transition
region with respect to these densities . Denoting the total free-energy density within
the phase boundaries by F(n, nf, nh, Ye, T), the free-energy density at the low-
density boundary of by Ft(n.,, Ye , T), and the free-energy density at the high-density
boundary nh by Fh(nh, Ye , T),, we can write

give the expected results
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F= vFh+(1 - v)Ff,

	

(3.Z)

where the volume fraction occupied by the denser phase is v = (n - of)/(nh - of)-
The minimization conditions

aF aF
anf nh�n.Ye,T anh nd,n,Y~,T

P= Pf =Ph = nfFh -nhFf=const,
nh- nf

IL = I£f = Ph - Fh- Ff =const

	

for nf_n ---- nh .

	

(3.9)
nh - nf

Here, the pressure is defined by eq. (2.2), i.e ., P = jcn - F, and the Gibbs free energy
per baryon is ju = aF/anI Ye,T. Eq. (3.9) is just the standard Maxwell construction
and provides two equations that may be used to solve for of and nh . For a given
set of nuclear parameters, nf and nh vary rather slowly with Ye and T, and they are
tabulated and stored. When densities intermediate to of and nh are encountered,
the values of the thermodynamic variables can be established from the Maxwell
construction, using the minimization conditions eq. (3 .8) :

P=n aF - F=Pf=Ph,an Y,,T

F=Ff+»f(n-nf),

1 aF

	

A

	

A

9 - 11e =--

	

= ( 1 - v)(luf - ILef)+v(Âh - 1eh) 9
n a Ye

	

n,T

An = l-4f + Ye(IJL - Ile)

ns = -
aF

	

= (1- v)sfn f+ vsh nh .

	

(3.10)
aT n,Y,

A typical situation is presented in fig. 6, for our "standard" nuclear parameter
set (see sect . 5) . The phase boundaries, including the Maxwell construction bound-
aries, are shown by the curves. These boundaries merge at high temperatures, and
the transition is marked by a single curve at which the free energies of the two
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phases become the same. The boundary curve continues through the maximum in
temperature to lower densities, where it smoothly joins the nuclear dissociation
curve (in this figure, this curve is defined by the mass fraction of nuclei XH =10-4) .
As expected, the phase boundaries shift to lower temperatures and densities as Ye
is decreased .

s they stand, the equilibrium equations (3.2) and the conservation equations
(3.1) are not amenable to an exact solution involving less than a three-dimensional
iteration scheme because only four of the variables

	

n® , x® , r, n�®, np, and n,', can
be expressed as a closed function of the others.

	

e chemical potential and pressure
uilibrium equations,

	

s. (3.2b)-(3.2d), are not simple analytic relations . However,
one can obtain straightforward analytic derivatives of these equations with respect
to the three remaining free variables (see appendix A). Thus a full Newton-Raphson
iteration scheme is practical .

	

e pursue this method in this section.
In many applications, the input thermodynamic variables will not be the standard

set (it, Y, T), but may include the pressure, internal energy, and/or the entropy .
It is straightforward to generalize the computation of the EOS for alternate input
variables by using a Newton-Raphson iteration. This can either be done separately
from the solution of the equilibrium equations, in which case there will be a set of
two nested iterations, or be done simultaneously with the solution of the equilibrium
equations, in which case the dimensionality of the iteration scheme is increased.
In either case, it is necessary to have derivatives of the alternate variables with
respect to the standard ones. These can be computed analytically, and are given in
appendix B.

o solution

4.1 . NUCLEI IN EQUILIBRIUM WITH THE VAPOR OF NUCLEONS AND a-PARTICLES

Let us first discuss the choice of variables to be used to solve the equilibrium
conditions eq. (3.2) . There are a total of seven internal variables : x;, n;, u, r, nno, npo
and n,, . It has already been emphasized that r can be eliminated from this system
through the first equilibrium condition eq. (3 .2a), which corresponds to using eq.
(2.41) for the sum of the surface and Coulomb energies . Next, we note that the
mass and charge balance equations (3.1) can be trivially solved for u and x; in terms
of the other variables :

n
u

	

-(nno+npo)(1 - n,,,, v« ) -4na

	

(4.1a)=
ni - (nno+ npo)(1- n,,v« ) -4n,,,

,

nYe(n; - (nno+npo)(1-naya ) -4n,,, )- (n po(1- n,,va )+2n,,)(ni -n)
ni(n - (nno+ npo)(1- n,rv,,) --4n J
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Furthermore, n~ is an explicit function of n�® and n~ through eqs . (3.2e) and (2.25) :

B~, + PovQ
n~ = 8nQ exp

	

?,	+2(,yno+ V~ol T+ ~~+ V~lT)

	

-	(~ .2)

We note from eqs . (2.15) and (2.18) that the degeneracy parameters °s,�® and rl

	

,
the potential energies Yno and Yom , and the pressure P® are functions of the nucleon
number densities and temperature alone. As a result, u and x; are established as
explicit functions of the three remaining variables n;, n�® and nom . The values of
these three independent variables can be found by iteration, using the three equili-
brium conditions, eqs. (3.2b)-(3.2d) .

There are good reasons why u and x; are used as dependent variables, and n; as
the independent variable, as opposed to other possible choices. First, the choice of
n; and x; as dependent variables is poor because they are relatively slowly varying
over the domain of n, Ye , T space, while u, which would be the independent variable,
spans the entire range 0-1 . This makes u undesirable as the inde ndent variable.
Secondly, suppose we had chosen to use, instead, the pair u and n; as dependent
variables, so that x; would become the independent variable . The requisite equations
would be

u

The first of these has the drawback of going to a finite zero over zero limit when
the mass fraction of nuclei is close to one, for any u. This property makes x;
undesirable as the independent variable . Note that eqs . (4.1) have well-defined limits
in this case .

It should be mentioned that a potential difficulty exists with eq. (4.1b) in the limit
when nuclei disappear ( u -~ 0), since the denominator, which is proportional to u,
becomes small . However, it may be shown that the variable x; is approximately
bounded within the :ange 0.8 Ye - 0.5 . The existence of these bounds can be used
to remove the potential convergence problems .

In practice, it is desirable to employ the logarithms of the number densities
n�o , npo as independent variables, instead of the number densities themselves. Them
are regimes, especially at lower temperatures, in which the number densities can
become very small and rapidly varying, and the values of the number densities are
not especially relevant in the mass and charge coraervation equations . But the
degeneracy parameters (or chemical potentials) are always relevant quantities
because of the equilibrium conditions, and these are proportional to the logarithms
of the densities in this liraait . In fact, the quantities log ( ~ ;®i T;~ 2 ) are especially

n --1- (ye x~)u =
~ (4.3a)

2n~(1-2x;)+(1-nw~)(n~-x;(n,~o+n~))

n-(n�o+npo)(1-u)+4n,~(1-u)
n; _ (4.3b)
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wly varying with changes in temperature, and represent good choices for the
independent variables . For nuclear interactions characterized by m*= m (i.e ., a, =
a2 = ), it is even more convenient to use T-q�.) and Tgp.as the independent variables,
since each , is a function only of the corresponding n, and T. In the non-degenerate
limit, in which the number density n,® becomes small, ij,®oc In (n,01 T3/2). Thus,

following discussion and appendices and C will assume that the set
ent variables is zj = (n;, n,,., n,,.), it is trivial to modify these expressions
to sets zj = ( i, In (n

	

l'), In (n

	

/2)) or z; = (n;, T°i�® , Tap.) are
d.

s

ere, usin,

where

s . (3.2), we find

ste
three equilibrium

	

uations

	

s. (3.2b)-(3.2d) must be solved numerically
the t

	

chosen variables.

	

e write these three equations as

~_

	

~x.a_(1-u)
3Uns~

	

A

	

[ jAtj - x® ®(jAjj - T)

2ß or#

	

_l (1-u)_

	

,
(Xi -1)- -

A
[hut,+h~(1-Xi)(uH-T) ] .

	

(4.5)3uni

	

a,

	

,X;

	

o

The essence of the Newton-Raphson method is to update the values of n;, n�o
and npo from previous estimates by using the increments

(4.4)

is the matrix of derivatives, z; is the set of independent variables, and there is implied
summation in eq. (4.6) . The elements of Dk; can be found analytically and are given
in appendix A.
We summarize the computational method in the nuclei regime: initial guesses for

n;, nn. and npo , are used . From them, x; and u are determined from eq. (4.1) . Now,
all the quantities in eq . (4.4) may be evaluated . New guesses are forthcoming after
a Newton-Raphson step, eq. (4.6) .

Sz; = -(Dk;)- ' Ak , j, k =1, 3 (4.6)

D,,,
aAk=

(4.7)
a1z;
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4.2 . DISSOCIATED REGIME: NUCLEONS AND a-PARTICLES ONLY

At sufficiently high temperature for a given density below the saturation density
ns, the nuclei completely dissociate and the equilibrium conditions eqs. (3.2a)-(3.2d)
will no longer apply. However, the nucleon-alpha equilibrium eq. (3.2e) is still
maintained. The same situation occurs above the phase transition to bulk matter,
which occurs just below nuclear matter density. The P®u. term in eq. (3.2e) ensures
that a-particles disappear at high densities . Although this equilibrium

	

written
as a quartic equation in n'®2 if the nucleon~

	

gas is ideal, at densities above 0.001n.,
this is not satisfactory. We outline here a general one-dimensional Ne

	

on-

	

n
solution for the nucleon-alpha regime, that is actually more efficient than the q

	

ic
solution in the ideal case.
For the independent variable we choose Xp= npe/ n. Then elimination of n. from

eqs. (3.1), with u = 0, yields

nno= n
Xp[2-nva(1- Y)] +2(1-Y,)

2-nv,Y,.
npo = nXp .

	

(4.S)

With these values for n�. and npo, the use of eq. (2.15) gives 9,,,, and 9p® ; eq. (2.12)
gives u.. and upo; eq. (3.2e) gives 1L. ; and, finally, eq. (2.25) gives n.. A
one-dimensional iteration on the mass conservation equation n=
(n�o+npo)(1-n,,,va)+4n. can then be used to solve for corrected values of Xp. In
the situation in which n. vanishes, the solution is trivial : Xp --> Ye .

There is a technical problem in determining, for a given (n, T, Ye) combination,
whether or not nuclei exist. If nuclei do not exist, or their abundances are negligibly
small, the three dimensional iteration described in the previous section will fail to
converge. It is then simple, but rather inefficient, to switch from the three-dimensional
nuclei solution to the one-dimensional alpha-nucleon iteration to find the equili-
brium solution . Thus, increasing the temperature at fixed density and electron
fraction forces the nuclear abundance to decrease, until, finally, nuclei completely
disappear. However, going through the dissociation region in the opposite direction
is not so straightforward, since one does not know a priori the temperature at which
nuclei will reappear. One must attempt to solve the three dimensional iteration at
each temperature as the temperature is decreased . When it finally converges, nuclei
appear. This procedure is unnecessarily inefficient . For this reason, we have chosen
to store the (n, T, Ye) information for this boundary, defined as the locus of points
for which the nuclei have a mass fraction of 0.01%, or for which the free energies
of the phases with and without nuclei are equal. This boundary is computed by a
separate program which calls the EOS code, and the data is stored in an ASCII
file . A startup routine reads this file prior to the initial call to the EOS in order to
initialize the array of boundar), points, along with the array containing the phase
boundaries of the Maxwell construction . This boundary and phase data is thus
computed once and stored on disk . Of course, each time a new set of nuclear force
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parameters is employed, these boundaries must be recomputed. Examples of these
phase boundaries are discussed in the next section .

%Ve adopt the "'standard"' parameter set K,= 375

	

eV,

	

=16

	

eV, S� _

.3 MeV, cr, =1 .15

	

eV "

	

-'°, S,=45.8

	

eV, n,=0.155 fm

	

and m* = m. The
parameters

	

,,,a

	

, a

	

then established from eqs . (2.31) an (2.32). This parameter
set, with the notable exception of

	

, is equivalent to the Sky

	

e I® set employed
by L

	

.

	

e will first identify what the major differences between our results with
this parameter set and L

	

are, and then we present results with more realistic
Z's ;l; &%L aim

	

also coaipwc with the results of C
n our description o the EOS, using the standard parameters, most of the

thermodynamic properties obtained by LLPR are well-modeled, including the loca-
ns of phase boundaries, isobars and isoergs. Our choice of m* = m and our

neglect of the neutron skin of the nucleus and the translational A dependences,
tea to the only significant differences . e compare T, , and A along s =1 and
s =1 .5 a iabats in figs. 3-5.

e largest differences, as we now discuss, can be attributed to the choice of
t low densities, it is straightforward to

t

between LLP
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symmetry energy in the nuclear model.
shoe' that the s

	

metry-energy difference

(1 -2xà)_

	

S,

	

1
/3 -(S,-SSA-1/3)

[1+(S/S,)A_

and this work leads to the chemical-potential differences

S
Ili� =2(1-2x;)

	

,
[1+(SIS,)A- 1/;-(S,-2x;SsA-1/3) ,S

Al =4(1-2x;) 1+(S
S
/S

~
,)A_1

/3 -(S,-SSA-1/;)

	

.

	

(5.2)
S

For Y, = 0.3, n -10-4-10-5 fm-3 and T < 1 MeV, one finds x; = 0.33 and A== 100,
and eq. (5.2) implies that ®i,,, = -0.6 MeV and 4l' = 3 .3 MeV. This value for A/^
agrees well with the results shown in fig . 4 . Obviously, low density, low temperature
values of the chemical potentials must agree with experimental information, which
implies that one must take care to use a set (S� SS) that is consistent with both the
nuclear mass model and nuclear systematics . Thus, in our approach, in order to
obtain the same value as LLPR for ,û for a laboratory nucleus like Fe, one should
select a smaller value of SS, about 33 MeV, if S, is to remain unaltered .
A further consequence of a non-zero value for ®Iu,,, is that the mass fraction of

neutrons, which are nondegenerate for these conditions, is a factor of exp AAn/ T-
0.4 less in our model than in LLPR. Since the entropy here is dominated by the
external nucleon vapor (the s,, term in eq . (3.4c)), the temperature along the adiabat
must be higher than for for LLPR, as shown in fig . 3 .
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Fig. 3. Temperature along adiabats labelled by the entropy per baryon, for the case Ye=0.3 .
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KS = 375 MeV; - s =

	

1
Ks = 375 MeV; s = 1 .5

---

	

:;= 75MeV:s= 1

R)KS =375MeV;s= 1 .5

0
-4.5 -3.5

KS = 375 MeV; s = 1
KS =375MeV;s= 1 .5

--- (LLPR) KS = 375 MeV; s = 1
(LLPR) Ks = 375 MeV; s = 1 .5

-----.------------

-4.5 -4 -3.5

-3 -2.5
Log,®n (fan-3 )

-3 -2.5
Log,,,n (fm-3 )

Fig. 4. Same as fig. 3, except A = MA� -MA,, is displayed.
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e

= 375 eV; s = 1
----~I.=375 eV;s= 1 .5
.--®® (LLPR)

	

= 375

	

eV; s = 1
(L R)

	

= 375 eV; s = 1 .5

1 1 ~,i

_

	

A a A 9 I A 1 1 A I A 1 1 A I 1 1 A 1 I 1 1 1 1 I 1 A 1 1 ~~1 1 1 1~

® °3.5 -3 -2.5 -2. -1.5 -1 -0.5

Logaon

Fig. 5. Same as fig. 3, except nuclear massnumber A isdisplayed. Curves terminate at the phase boundary.

t supernuclear densities, however, the nuclear specific heat, which is directly
proportional to m*, is larger in our model than in LLPR. Thus, as seen in fig . 3, at
the highest densities, the temperature along adiabats becomes larger than in the
model ofLLPR.

	

e chemical-potential behavior at high densities displayed in fig . 4
is more complicated, and depends upon the x dependence of the nucleon-nucleon
force (i.e ., eq . (2.8)) . The bulk matter symmetry energy, and 11, of the nucleon-
nucleon force used in this paper increase monotonically with density, as seen in
fig. 4 . However, the Skyrme I' force employed by LLPR has the characteristic that
the symmetry energy, and 11, begin to decrease beyond 1.5 n, . This is due to the x
dependence in the three-body interaction, which dominates above n,. Unfortunately,
at present, there is little or no experimental information that can be used to
discriminate between these density dependencies .

Lastly, fig . 5 displays the nuclear mass number A along these adiabats . Below
densities at which nuclear shape variations rray be important, our approach is seen
to overestimate A, chiefly because of the neglect of translational effects . However,
as the transition to bulk matter is approached, our A values shrink below those of
LLPR due to our inclusion of the aforementioned shape variations .
We next consider varying the nuclear compression modulus Ks . This not only

affects how baryon pressure changes with density, but also affects the critical
temperature, the phase boundaries, and the nuclear specific heat . Fig . 5 shows the
nuclear phase boundary and fig . 7 adiabats and isoergs for the cases K, = 375, 220
and 180 MeV. In accord with eq . (2 .31) both adiabats and phase boundaries are at
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Fig . 6. Phase boundaries between uniform matter and nuclei for the case Yc = 0.3 and forselected values
of the incompressibility KS .

lower temperatures for smaller values of K5 . However, above phase transition
densities, the temperature along adiabats is independent of Ks . This is because,
according to eqs. (2.9), (2.10) and (2.14)-(2.16), sbu,k depends on!} on n�, np and
T and is independent of the interaction. The energies are not significantly altered
by variations in K. . Examiningthe three plots in fig. 7, the only appreciable variations
occur either at supernuclear density or at high temperatures in the vicinity of the
peak in the phase curves (compare fig. 6) . This independence is largely due to the
fact that electrons dominate the internal energy and pressure except at high densities
and/or temperatures . Furthermore, at high temperatures and low densities, where
nuclei are dissociated, the nucleons are effectively non-interacting and the value of
K, becomes irrelevant. At low density where the energies of nuclei are important,
the density of matter in nuclei does not significantly differ from n,, because of the
relatively large values of K, . Both n i - n, and the compressional contribution to the
energy are proportional to 1/Ks under these conditions .
To facilitate comparison of our results with those of CB, we examine the behavior

of the EOS in the vicinity of the phase transition between nuclei and bulk matter
for the s =1 and s =1.5 adiabats .

Fig. 8 displays the temperature along an isentrope of s =1 with Ye= 0.3 for the
three incompressibilities, together with the results of LLPR (K s = 375 MeV) and CB
(K s =180 MeV) . The difference between the K, = 375 MeV and LLPR curves are

20 1 1

Ks = 375 MeV
KS = 220 MeV

---K. = 180 MeV

15

10
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-?5 -4 -W -3 _Z5 -2 -1Z -1 -M5
Logj,on (fm-3)

Fig . 7 . Adiabats and isoergs for the case Y, = 0.3 and for (a) K, = 375 MeV, (b) K, = 220 MeV and
(c) K, = 180 MeV. Solid lines denote adiabats, dashed lines denote isoergs .



20

15

-4.5

12

10

AM. Lattimer, F. Douglas Swesty / Generalized EOS

-3.5 -3 -2.5 -2 -1.5 -1 -0.5
Log ion (fM a)

Fig. 7-continued.
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------- KS = 180 MeV
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-1.4 -1 .3 -1.2 -1 .1 -1 -0.9 -0.8 -0.7 -0.6 -0.5
Logion (fm-3 )

Fig. 8. Temperature in MeV along the s = 1 adiabat for the case Y,, = 0.3 . Shown are cases taken from
this work (K,=375, 220 and 180 MeV), from LLPR, and from Cß.
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displays the opposite behavior, however. Finally, as discussed
ve the phase transition density, the temperature along

endent of

	

, in our model.
the same adiabats . All curves display a drop in P/n
nsition to bulk nuclear matter. Although it has been

hysical, it is a natural consequence of the fact that the
the well construction region . In fact, the LLPR

additional transition between nuclei and bubbles exists
at the value of the pressure at densities below these
ndent of the bulk incompressibilities and the nuclear

e

KS = 375 MeV
KS = 220 MeV

_______ K = 180 MeV
--- (LLPR) KS = 375 MeV

(Cooperstein-Baron)
K.,= 180MeV;y=2.5

-1 .4 -1 .3 -1 .2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5
Log,on (fm 3)

Fig. 9 . Same as fig. 8, except for the pressure divided by baryon number density (in units of MeV) .



The stiffening of the EOS as one goes from matter with nuclei to bulk matter is
best shown by reference to the adiabatic index,

which is shown in figs. 10 and 11 for s =1 and s =1 .5, respectively, and Y. = 0.3 .
The transition is marked by a steep drop in l'. e Maxwell construction softenin
forces T nearly to zero since the pressure along an adiabat through the coexistence
region is almost constant . The adiabatic index does not drop completely to zero in
this region since the temperature and not the entropy of both the nuclear and bulk
phases must be the same. For this reason, the entropy actually increases slightly as
one moves across the coexistence region at constant temperature

	

).

	

is effect is
more pronounced in fig . 11 for s =1 .5 as can readily be seen. The LLPR EOS has
two transitions as discussed previously. The transition to bulk matter occurs at
densities very nearly the same as in the KS = 375

	

eV case, and above and below
this transition, the is agree very well.
Note the trends that the Maxwell construction region becomes wider, and moves

to lower density, with decreasing 5 . Both of these features may be understood as
follows :
From eq. (3.6), the value of u = n/ ns at the midpoint of the transition, where the
energy of the uniform matter and nuclei phases are approximately equal, obviously
decreases with decreasing KS . In addition, the lower the value of u at the transition,

Vl
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- KS = 375 MeV
- K., = 220 MeV

------- KS = 180 MeV
--- (LLPR) KS = 371; MeV

(Cooperstein-Baron)
K.,= 180MeV;y=2.5

Fig . 1 0 . Same as fig . 8, except for the adiabatic index r.
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.5

.5

L5

0,5

-1.3 -12 -1.1 -1 -0,9 -0.0 -0.7 -0.6 -0.5
Loga

Fig. 11 . Same as fig. 10, except that s = i .5 .

e larger is the energy change across the transition, and, thus, the larger is the
width of the transition 44 ) . In compRrison, the CB phase transition is rather narrow,
occurs at a higher density than for the K, =180 MeV case, and moves up in density
as the entropy is increased. Also note the relatively low value of I' at supernuclear
densities .
We have done preliminary testing ofthe EOS in some basic hydrodynamics codes.

One particularly important test of the EOS 4$,46) is that ofthermodynamic consistency
in gravitational collapse. That is to say, in an adiabatic collapse the entropy should
remain constant . In test collapses with a newtonian hydrodynamics code we have
found that the entropy is conserved to better than one percent over the approximately
one thousand timesteps that it took for our simulation to pass the "bounce" stage .
Additionally, we have checked for internal consistency among the thermodynamic
quantities such as free energy, pressure, etc . We have found no regions of the
(n, T, Ye) space where there are any substantial inconsistencies .

Although we have verified that the EOS code returns reasonable values throughout
the entire relevant (n, T, Ye) space, some minor discontinuities in pressure and
energy may exist as one passes through the uppermost parts of the phase boundaries .
These discontinuities are most pronounced for Ye values less than 0.2, but are
confined to temperatures near the peak in the phase boundaries and have relative
magnitudes which are never more than -1-2 percent. The existence of these
discontinuities leads to the "bumps" in the upper portions of the phase boundaries
observed in fig . 6 . These discontinuities result from the inability of the Newton-
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Raphson iteration scheme to converge for a limited set of conditions. When such
a non-convergence takes place, the code return values for thermodynamic quantities
by assuming uniform matter . The inability to converge results from inaccuracies in
our parameterizations of the surface, translational and Coulomb energies, or from
the existence ofmultiple solutions, which are most pronounced at high temperatures .
Such conditions will not be encountered during the dynamical collapse and bounce
phases of supernovae simulations . These conditions may be achieved, however,
during the cooling of the protoneutron star within a few seconds after colla 4") .
Nevertheless, the protoneutron star is quasi-static and these small discontinuities
are unlikely to present problems in hydrodynamic or hydrostatic simulations under
such conditions . We have also restricted, in our code, input values of Ye to the
range 0.03-0.51 and T to values greater than 0.05

	

eV. This is done only for
convenience, and does not represent a limitation of the EOS. These conditions will
never be encountered during supernovae simulations. Even in cold neutron stars,
Ye is in general larger than 0.04.
The EOS code is rapid enough to be used in a realistic hydrodynamical simulation

and has been designed to allow easy incorporation into existing radiation hydro-
dynamics codes . The EOS code can be obtained by contacting the authors . Because
the derivatives of thermodynamic quantities are analytically evaluated, this EOS
code eliminates the need to numerically evaluate derivatives, thus requiring fewer
calls to the EOS and further enhancing computational speed. We would like to
point out one aspect of the EOS that allows for optimal computational efficiency.
Typically, in hydrodynamical codes ore solves the energy equation

e"+l = e"_12 z(p
"+

1 +P")
dV

	

(5.4)

6. Conclusions

iteratively, adjusting the new internal energy, e"', until the new value of the pressure,
p"+ ', and e"+' are consistent with eq. (5.4)= Usually, the internal_ energy is taken as
an independent variable in these codes . While we have written our EOS code to
accommodate either the internal energy or temperature as inputs, the use of internal
energy necessarily introduces another level of iteration in the EOS code . If one
chooses to view both the energy and pressure as functions of temperature and then
to iterate on temperature until the first law is satisfied, the computational effort is
significantly reduced . In addition, as can be seen from fig . 7, at each density and
Ye there exists a minimum value for e. The use of e as an independent variable can
be dangerous since transport or an iterative step may reach a value of e which is
less than this minimum value . The choice of T as the independent variable obviates
this problem.

The EOS described here is designed specifically to be rapid enough for use in
radiation hydrodynamic codes, while still accurate in its modeling of the underlying



physics . t permits the consistent alteration of the major nuclear-force parameters,
which is important given the current uncertainty in our knowledge of these par-
ameters .
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Note added in proof: Since this paper was submitted, we have considered
implementing a minor change to the EOS algorithm : the function h, defined in eq.
(2.28), would have an overall exponent of 3 instead of 2. This ensures that h" _
a'h/ax -.0 and a2 rh/aT`' ~0 as T-> T,, which is not the case with the present
definition . This change eliminates the convergence problems that produce the
"bumps" in the phase boundaries near T,, seen in fig . 6 . Moreover, this change
increases the nuclear surface specific heat contribution by 50%, which improves the
overall agreement with the results of ref. 41) and with nuclear systematics .

In addition, a version of the EOS that includes the liquid droplet form of the
symmetry energy, i.e ., includes the effects of a neutron skin, is being developed . As
discussed in sect . 2.6, this change necessitates solving a five-dimensional Newton-
Raphson iteration, compared to the three-dimensional scheme described herein.
However, this change actually increases the speed of convergence near the phase
boundaries, a result that was also pointed out to us by Jerry Cooperstein . We have
not yet determined if the overall speed of the five-dimensional code is greater or
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less than that of the three-dimensional code in hydrodynamic simulations, in which
zones rarely pass through phase boundaries .

61Aki
aZj

aAko
aZj

Appendix A

DERIVATIVE MATRIX FOR THE THREE-DIMENSIONAL SCHEME

In this appendix the derivatives of the three equilibrium conditions eq. (4.4) are
written out. We use the information that the bulk properties of matter inside nuclei
(Pi , A� ; and wpi) are explicit functions of ni and xi alone, while those of matter
outside nuclei (Po+ P., izno and #po) are explicit functions of n�Q and n alone.
The finite-size terms in the equilibrium equations (the B's) are explicit functions of
n i , xi and u. Since n. is an explicit function of 1Ano and jAp., we also have from eqs .
(4.1) that xi and u are explicit functions of n� nno and np. . It is convenient to write
the three equilibrium conditions in the form (cf. eqs . (4.4) and (4.5))

Ak = Aki(Xi, ni) - Bk(xi, ni, u)-Ak®(nno, npo) ,

	

(&1)

where subscripts i and o refer to the matter inside nuclei and to the matter outside
nuclei, respectively, and the subscripts k =1-3 refer to P, M,n and jLp, respectively.
For example, A, i = Pi and A ,o =Po+P. . We may therefore write

+
aAki axi

l x, axi niJani ,...l

aBk +aBk axi
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au
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n ;,u anno

	

n;,n~~
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aBk ax i
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axi

	

n;,u anpo	ni,n� ,,
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n�X, anpo

	

ni,n,,,

aAki axi

axi

	

n; anno

aAki

	

axi
axi

	

n; anpo

0 Zj =ni

aAko
Zj = nno

anno np�

aAko
anpo

zj = npo .

zj=ni

z, n.,

zj =npo .

zj = ni

Zj = nno

zj = npo

(A.2)

(A.3)

(A.4)

The derivatives of Bk may be easily obtained from eqs . (4.5) and will not be given

explicitly here . The derivatives of Aki and Akn are found by exploiting the thermo-
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dynamic relationships for the chemical potentials and pressure of the bulk fluids .
e will employ the notation for the isospin such that t(-t) = n(p) or p(n), and, in

the following two equations, n, refers to either n, i or n,®, u, to u,i or IA,., and P to
or

, ,
ere we have used r as anot

r the

	

a icular

where

,
an,

aT,
an,

an,
a(aa7,+a,3_r )

( .5b)

er isospin label, S;j is the Kronecker delta, and

a
=(1 -xi) aani Xi

	

anni

a

	

a a
- niaxi

ni

	

anp i n n , anni

-a/ :! (i7,)

tential given by eq. (°2.13), we find

+2a+4bS_,r+S(1+S)c(n� +nn)6-', (A.7

=

	

3TGPS,r+ (9
nt *r TnrGr - 5,r,

	

(a,+(a a -a,)8,r)

	

"

	

A.8
n_ ® b

	

b

ese equations may be used directly to find derivatives of jAn®, jApo and Po . Eq.

(4.2) may be employed to find derivatives of Pa

aP"

	

- Tan'

	

- n,,

	

(2- nrova)
allro

	

(A.9)
an,. n_

	

aY1,o n_

	

r

	

an,o n_

To get the proper derivatives for the inside bulk fluids, that is, ones taken with
respect to ni and xi instead of nni and npi , one may make use of the following
relations, combined with eqs . (A.5) :

)Sar)

	

+aV'- I" I s

	

(A.5a)
an,

nni

(A.6)

(A.10)

It is worth mentioning that if the form of the nuclear force used has a, -= a2 = 0,

eqs. (A.5a) and (A.7) are simplified considerably .



The remaining derivatives to be evaluated are those of u and x;, which, using eq.
(4.1), are :

,
an; n., .~ .n.. .,

	

n®n ,
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ax;

	

n2

	

43U

	

i - u
)n,, n n_

	

n®u an,, n n_

	

n;u

Appendix

DERIVATIVES OF THERMODYNAMIC QUANTITIES

x [S,p(1-n.vQ ) + (2-npovQ )
an

.an,.

and n2 = nix; - npo(1- nav,,) - 2n~, and anjan,o is given in eq. (A.9).
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We have used eq. (3.4), applied to baryons only, to obtain the above identities .

In these expressions we have used the shorthand n, = n; - (n,,®+ nß)(1- n.u.) -4n~

In this appendix, derivatives of the "non-standard" variables P, e (internal energy
per baryon) and s are obtained with respect to the "standard" variable set (n, Ye, T).
These quantities are useful if one wishes to call the equation of state with one or
more "non-standard" variables . They are also necessary to calculate adiabatic
indices .
We first consider only the baryon contributions, and use F, P, e and s to refer

to only these contributions . The required derivatives are :

au u
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eqs. (3 .

	

)

	

d (3.4b) in e . (13.2) . 'Thus, it is left only to evaluate
a ~ an, a ~~~aT, a ~~aT' and as~aT Such derivatives have to be evaluated
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at the internal independent variables z; --- (n® , n~,®, np®) and
t e

	

ependent variables yk --- ( , ~;) will change as A; --- ( n, T, Y~) are each varied .
e changes in ~; and 3=k are constrained by the equilibriugn conditions eqs. (4.4)

ass and charge conservation eqs. (3.1) .
In general, therefore, derivatives ofthe quantities ~ _ (p,�® , typo, T') may be written
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(B.3)

where we use the convention of implied summation over repeated indices . The
changes in z with respect to those in A are determined from eq. (4.4) :

The changes in y with respect to z are easily obtained from eqs . (A.11) and the

® aA�, aAm az;- + +
aA; ~,ti, az; ~,,, aA ;

aAm
ayk

ayk+
~,Z aA ;

ayk az;
az; � aA; (B.4)

which may be inverted to yield

az; aAm aAm ayk
_,
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-
-

aA; y ~ az; ~,y
+

ayk x,~ az;

x
aAm +aAm ayk (B.5)
aA; z,y ayk ~,Z aA ;
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changes with respect to A may be found from eqs . (4.1) :

_au __l
an

	

n, ,

au

	

(1-u)[4- v,,(n�o + n~)] an,
aT~ n, aT'

ax;

	

n,Ye- n2
11an

	

un;n,

ax®

	

(n;x;-nYe)C4-(n �®+ne2)J+(n-n®)(2-ninv.) an«
aT

	

un;n,

	

aT '

where n, and n2 are defined as in appendix A. Here, we must employ the relation
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The derivatives of the bulk variables (P, jc,,, Oyp) and the finite-size terms with
respect to z and y are evaluated in appendix A, so the calculations of (8A./az) ,.,
and (aA,�/a,,)Ia,Z have already been done. The quantities (aAm/an )I,f are trivially
zero, since there is no explicit density dependence . The quantities (aA,./aT)I,, may
be found with the assistance of the following, applied to bulk matter inside or
outside nuclei:

_ _!G -FE
5TS_9m*

s (2T

	

2h2

	

)
(£t2+ ( 411

The derivatives (aB,/a T) are easily found from eqs. (4.5) and are not given here.
The last required derivative may be found by directly differentiating eq. (3.4c) :
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(B.9)

It is useful to note in this regard that entropy derivatives for the bulk fluids may
be obtained from eqs . (2.16) :

(B.10)



n this expression, n, s, m

	

and r refer to the bulk matter quantities inside or outside
the nucleus .

e full derivatives eqs . (B.1) are found by combining the results for the baryons
those for the electrons and the photons, which are given in appendix C.wit

'or the
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p-a icle-
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eitre

	

elv relativistic limit, for any degree

where j is the net number of the particular lepton per baryon (i.e ., the number of
les minus

	

e number of antiparticles), g, is the spin degeneracy and 1A, is the
lepton's chemical potential .

	

e chemical potential may be found from solving eq.
(C.1), which is a cubic:
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TON ENERGIES

ses of this paper, it is sufficient to assume that leptons (electrons
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it equilibrium. Letting
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at keeping the lowest order mass corrections in the
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where t = 37r 2( c)3n Y1/g1 and q =$(7rT)` - ;na;c4 . Expressions for the pressure and
entropy per baryon are:
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(C.3)

For completeness, we also write down the expressions for a photon gas (I,,, = 0) :

_ 4P,,

	

3 P,,
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nT '	e'y =

	

n

	

.

	

C.4

The approximation eq. (C.l) for electrons will break down at densities below
109 g . CM-3 and temperatures below 1 MeV, and in this regime, explicit solution of
the appropriate Fermi integrals is necessary [cf. Cooperstein et A'2)] . However,
the lepton and photon energies are independent of the baryonic equation of state
and the use of a different algorithm for these energies will leave the baryonic EOS
unaltered .
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Finally, for reference, we include the derivatives for electrons (using ge ® 2):
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The photon derivatives are easily found to be:
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All derivatives of photon quantities with respect to Ye are zero.
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